Теорема виета исключения. О применении теоремы виета при решении квадратных уравнений. Найдём сумму корней

Теорема Виета часто используется для проверки уже найденных корней . Если вы нашли корни, то сможете с помощью формул \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вычислить значения \(p\) и \(q\). И если они получатся такими же как в исходном уравнении – значит корни найдены верно.

Например, пусть мы, используя , решили уравнение \(x^2+x-56=0\) и получили корни: \(x_1=7\), \(x_2=-8\). Проверим, не ошиблись ли мы в процессе решения. В нашем случае \(p=1\), а \(q=-56\). По теореме Виета имеем:

\(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}7+(-8)=-1\\7\cdot(-8)=-56\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1=-1\\-56=-56\end{cases}\)

Оба утверждения сошлись, значит, мы решили уравнение правильно.

Такую проверку можно проводить устно. Она займет 5 секунд и убережет вас от глупых ошибок.

Обратная теорема Виета

Если \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\), то \(x_1\) и \(x_2\) – корни квадратного уравнения \(x^2+px+q=0\).

Или по-простому: если у вас есть уравнение вида \(x^2+px+q=0\), то решив систему \(\begin{cases}x_1+x_2=-p \\x_1 \cdot x_2=q\end{cases}\) вы найдете его корни.

Благодаря этой теореме можно быстро подобрать корни квадратного уравнения, особенно если эти корни – . Это умение важно, так как экономит много времени.


Пример . Решить уравнение \(x^2-5x+6=0\).

Решение : Воспользовавшись обратной теоремой Виета, получаем, что корни удовлетворяют условиям: \(\begin{cases}x_1+x_2=5 \\x_1 \cdot x_2=6\end{cases}\).
Посмотрите на второе уравнение системы \(x_1 \cdot x_2=6\). На какие два можно разложить число \(6\)? На \(2\) и \(3\), \(6\) и \(1\) либо \(-2\) и \(-3\), и \(-6\) и \(-1\). А какую пару выбрать, подскажет первое уравнение системы: \(x_1+x_2=5\). Походят \(2\) и \(3\), так как \(2+3=5\).
Ответ : \(x_1=2\), \(x_2=3\).


Примеры . Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения:
а) \(x^2-15x+14=0\); б) \(x^2+3x-4=0\); в) \(x^2+9x+20=0\); г) \(x^2-88x+780=0\).

Решение :
а) \(x^2-15x+14=0\) – на какие множители раскладывается \(14\)? \(2\) и \(7\), \(-2\) и \(-7\), \(-1\) и \(-14\), \(1\) и \(14\). Какие пары чисел в сумме дадут \(15\)? Ответ: \(1\) и \(14\).

б) \(x^2+3x-4=0\) – на какие множители раскладывается \(-4\)? \(-2\) и \(2\), \(4\) и \(-1\), \(1\) и \(-4\). Какие пары чисел в сумме дадут \(-3\)? Ответ: \(1\) и \(-4\).

в) \(x^2+9x+20=0\) – на какие множители раскладывается \(20\)? \(4\) и \(5\), \(-4\) и \(-5\), \(2\) и \(10\), \(-2\) и \(-10\), \(-20\) и \(-1\), \(20\) и \(1\). Какие пары чисел в сумме дадут \(-9\)? Ответ: \(-4\) и \(-5\).

г) \(x^2-88x+780=0\) – на какие множители раскладывается \(780\)? \(390\) и \(2\). Они в сумме дадут \(88\)? Нет. Еще какие множители есть у \(780\)? \(78\) и \(10\). Они в сумме дадут \(88\)? Да. Ответ: \(78\) и \(10\).

Необязательно последнее слагаемое раскладывать на все возможные множители (как в последнем примере). Можно сразу проверять дает ли их сумма \(-p\).


Важно! Теорема Виета и обратная теорема работают только с , то есть таким, у которого коэффициент перед \(x^2\) равен единице. Если же у нас изначально дано не приведенное уравнение, то мы можем сделать его приведенным, просто разделив на коэффициент, стоящий перед \(x^2\).

Например , пусть дано уравнение \(2x^2-4x-6=0\) и мы хотим воспользоваться одной из теорем Виета. Но не можем, так как коэффициент перед \(x^2\) равен \(2\). Избавимся от него, разделив все уравнение на \(2\).

\(2x^2-4x-6=0\) \(|:2\)
\(x^2-2x-3=0\)

Готово. Теперь можно пользоваться обеими теоремами.

Ответы на часто задаваемые вопросы

Вопрос: По теореме Виета можно решить любые ?
Ответ: К сожалению, нет. Если в уравнении не целые или уравнение вообще не имеет корней, то теорема Виета не поможет. В этом случае надо пользоваться дискриминантом . К счастью, 80% уравнений в школьном курсе математике имеют целые решения.

Любое полное квадратное уравнение ax 2 + bx + c = 0 можно привести к виду x 2 + (b/a)x + (c/a) = 0 , если предварительно разделить каждое слагаемое на коэффициент a перед x 2 . А если ввести новые обозначения (b/a) = p и (c/a) = q , то будем иметь уравнение x 2 + px + q = 0 , которое в математике называется приведенным квадратным уравнением .

Корни приведенного квадратного уравнения и коэффициенты p и q связаны между собой. Это подтверждается теоремой Виета , названной так в честь французского математика Франсуа Виета, жившего в конце XVI века.

Теорема . Сумма корней приведенного квадратного уравнения x 2 + px + q = 0 равна второму коэффициенту p , взятому с противоположным знаком, а произведение корней – свободному члену q .

Запишем данные соотношения в следующем виде:

Пусть x 1 и x 2 различные корни приведенного уравнения x 2 + px + q = 0 . Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q .

Для доказательства подставим каждый из корней x 1 и x 2 в уравнение. Получаем два верных равенства:

x 1 2 + px 1 + q = 0

x 2 2 + px 2 + q = 0

Вычтем из первого равенства второе. Получим:

x 1 2 – x 2 2 + p(x 1 – x 2) = 0

Первые два слагаемых раскладываем по формуле разности квадратов:

(x 1 – x 2)(x 1 – x 2) + p(x 1 – x 2) = 0

По условию корни x 1 и x 2 различные. Поэтому мы можем сократить равенство на (x 1 – x 2) ≠ 0 и выразить p.

(x 1 + x 2) + p = 0;

(x 1 + x 2) = -p.

Первое равенство доказано.

Для доказательства второго равенства подставим в первое уравнение

x 1 2 + px 1 + q = 0 вместо коэффициента p равное ему число – (x 1 + x 2):

x 1 2 – (x 1 + x 2) x 1 + q = 0

Преобразовав левую часть уравнения, получаем:

x 1 2 – x 2 2 – x 1 x 2 + q = 0;

x 1 x 2 = q, что и требовалось доказать.

Теорема Виета хороша тем, что, даже не зная корней квадратного уравнения, мы можем вычислить их сумму и произведение .

Теорема Виета помогает определять целые корни приведенного квадратного уравнения. Но у многих учащихся это вызывает затруднения из-за того, что они не знают четкого алгоритма действия, особенно если корни уравнения имеют разные знаки.

Итак, приведенное квадратное уравнение имеет вид x 2 + px + q = 0, где x 1 и x 2 его корни. Согласно теореме Виета x 1 + x 2 = -p и x 1 · x 2 = q.

Можно сделать следующий вывод .

Если в уравнении перед последним членом стоит знак «минус», то корни x 1 и x 2 имеют различные знаки. Кроме того, знак меньшего корня совпадает со знаком второго коэффициента в уравнении.

Исходя из того, что при сложении чисел с разными знаками их модули вычитаются, а перед полученным результатом ставится знак большего по модулю числа, следует действовать следующим образом:

  1. определить такие множители числа q, чтобы их разность была равна числу p;
  2. поставить перед меньшим из полученных чисел знак второго коэффициента уравнения; второй корень будет иметь противоположный знак.

Рассмотрим некоторые примеры.

Пример 1 .

Решить уравнение x 2 – 2x – 15 = 0.

Решение .

Попробуем решить данное уравнение с помощью предложенных выше правил. Тогда можно точно сказать, что данное уравнение будет иметь два различных корня, т.к. D = b 2 – 4ac= 4 – 4 · (-15) = 64 > 0.

Теперь из всех множителей числа 15 (1 и 15, 3 и 5) выбираем те, разность которых равна 2. Это будут числа 3 и 5. Перед меньшим числом ставим знак «минус», т.е. знак второго коэффициента уравнения. Таким образом, получим корни уравнения x 1 = -3 и x 2 = 5.

Ответ. x 1 = -3 и x 2 = 5.

Пример 2 .

Решить уравнение x 2 + 5x – 6 = 0.

Решение .

Проверим, имеет ли данное уравнение корни. Для этого найдем дискриминант:

D = b 2 – 4ac= 25 + 24 = 49 > 0. Уравнение имеет два различных корня.

Возможные множители числа 6 - это 2 и 3, 6 и 1. Разность равна 5 у пары 6 и 1. В этом примере коэффициент второго слагаемого имеет знак «плюс», поэтому и меньшее число будет иметь такой же знак. А вот перед вторым числом будет стоять знак «минус».

Ответ: x 1 = -6 и x 2 = 1.

Теорему Виета можно записать и для полного квадратного уравнения. Так, если квадратное уравнение ax 2 + bx + c = 0 имеет корни x 1 и x 2 , то для них выполняются равенства

x 1 + x 2 = -(b/a) и x 1 · x 2 = (c/a) . Однако применение этой теоремы в полном квадратном уравнении довольно проблематично, т.к. при наличии корней, хотя бы один из них является дробным числом. А работать с подбором дробей достаточно трудно. Но все-таки выход есть.

Рассмотрим полное квадратное уравнение ax 2 + bx + c = 0. Умножим его левую и правую части на коэффициент a. Уравнение примет вид (ax) 2 + b(ax) + ac = 0. Теперь введем новую переменную, например t = ax.

В этом случае полученное уравнение превратиться в приведенное квадратное уравнение вида t 2 + bt + ac = 0, корни которого t 1 и t 2 (при их наличии) могут быть определены по теореме Виета.

В этом случае корни исходного квадратного уравнения будут

x 1 = (t 1 / a) и x 2 = (t 2 / a).

Пример 3 .

Решить уравнение 15x 2 – 11x + 2 = 0.

Решение .

Составляем вспомогательное уравнение. Умножим каждое слагаемое уравнения на 15:

15 2 x 2 – 11 · 15x + 15 · 2 = 0.

Делаем замену t = 15x. Имеем:

t 2 – 11t + 30 = 0.

По теореме Виета корнями данного уравнения будут t 1 = 5 и t 2 = 6.

Возвращаемся к замене t = 15x:

5 = 15x или 6 = 15x. Таким образом, x 1 = 5/15 и x 2 = 6/15. Сокращаем и получаем окончательный ответ: x 1 = 1/3 и x 2 = 2/5.

Ответ. x 1 = 1/3 и x 2 = 2/5.

Чтобы освоить решение квадратных уравнений с помощью теоремы Виета, учащимся необходимо как можно больше тренироваться. Именно в этом и заключается секрет успеха.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

2.5 Формула Виета для многочленов (уравнений) высших степеней

Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.

Пусть многочлен

P(x) = a 0 x n + a 1 x n -1 ­­­ + … +a n

Имеет n различных корней x 1 , x 2 …, x n .

В этом случае он имеет разложение на множители вида:

a 0 x n + a 1 x n-1 +…+ a n = a 0 (x – x 1)(x – x 2)…(x – x n)

Разделим обе части этого равенства на a 0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n -2 + … +(-1) n x 1 x 2 … x n

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

x 1 + x 2 + … + x n = -

x 1 x 2 + x 2 x 3 + … + x n -1 x n =

x 1 x 2 … x n = (-1) n


Например, для многочленов третей степени

a 0 x³ + a 1 x² + a 2 x + a 3

Имеем тождества

x 1 + x 2 + x 3 = -

x 1 x 2 + x 1 x 3 + x 2 x 3 =

x 1 x 2 x 3 = -

Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x 1 , x 2 …, x n данного уравнения, а правые части выражаются через коэффициент многочлена.

2.6 Уравнения, сводимые к квадратным (биквадратные)

К квадратным уравнениям сводятся уравнения четвертой степени:

ax 4 + bx 2 + c = 0,

называемые биквадратными, причем, а ≠ 0.

Достаточно положить в этом уравнении х 2 = y, следовательно,

ay² + by + c = 0

найдём корни полученного квадратного уравнения


y 1,2 =

Чтобы найти сразу корни х 1, x 2, x 3, x 4 , заменим y на x и получим

x² =

х 1,2,3,4 = .

Если уравнение четвёртой степени имеет х 1 , то имеет и корень х 2 = -х 1 ,

Если имеет х 3 , то х 4 = - х 3 . Сумма корней такого уравнения равна нулю.

2х 4 - 9x² + 4 = 0

Подставим уравнение в формулу корней биквадратных уравнений:

х 1,2,3,4 = ,

зная, что х 1 = -х 2 , а х 3 = -х 4 , то:

х 3,4 =

Ответ: х 1,2 = ±2; х 1,2 =


2.7 Исследование биквадратных уравнений

Возьмем биквадратное уравнение

ax 4 + bx 2 + c = 0,

где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

2.8 Формула Кардано

Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

х =

Эта формула определяет корни общего уравнения третей степени:

ax 3 + 3bx 2 + 3cx + d = 0.

Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.


F ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка . Пример 3.22. Найти экстремумы функции f(x) ...

Список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие...

Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с...



С единицами измерений физических величин в системе MathCAD? 11. Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...

Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.

Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.

Достоинства формулы:

1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.

2 . Без решения можно определить знаки корней, подобрать значения корней.

3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.

4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.

5 . Удобно применять формулу, когда старший коэффициент равен единице.

Недостатки:

1 . Формула не универсальна.

Теорема Виета 8 класс

Формула
Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:

Примеры
x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.

P = -2, q = -3.

X 1 + x 2 = -1 + 3 = 2 = -p,

X 1 x 2 = -1 3 = -3 = q.

Обратная теорема

Формула
Если числа x 1 , x 2 , p, q связаны условиями:

То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .

Пример
Составим квадратное уравнение по его корням:

X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .

P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.

Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

Доказательство теоремы Виета

Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно, .

Допустим у нас есть уравнение: . У этого уравнения есть такие корни: и . Докажем, что , .

По формулам корней квадратного уравнения:

1. Найдём сумму корней:

Разберём это уравнение, как оно у нас получилось именно таким:

= .

Шаг 1 . Приводим дроби к общему знаменателю, получается:

= = .

Шаг 2 . У нас получилась дробь, где нужно раскрыть скобки:

Сокращаем дробь на 2 и получаем:

Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

2. Найдём произведение корней:

= = = = = .

Докажем это уравнение:

Шаг 1 . Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

Теперь вспоминаем определение квадратного корня и считаем:

= .

Шаг 3 . Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем , тогда получается:

= .

Шаг 4 . Раскрываем скобки и приводим подобные слагаемые к дроби:

Шаг 5 . Сокращаем «4a» и получаем .

Вот мы и доказали соотношение для произведения корней по теореме Виета.

ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

Теорема, обратная теореме Виета

По теореме, обратной теореме Виета можно проверять, правильно ли решено наше уравнение. Чтобы понять саму теорему, нужно более подробно её рассмотреть.

Если числа и такие:

И , тогда они и есть корнями квадратного уравнения .

Доказательство обратной теоремы Виета

Шаг 1. Подставим в уравнение выражения для его коэффициентов:

Шаг 2. Преобразуем левую часть уравнения:

Шаг 3 . Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:

Или . Откуда и получается: или .

Примеры с решениями по теореме Виета

Пример 1

Задание

Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.

Решение

Шаг 1 . Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть, , – это заменяет , а . Отсюда следует:

Получается:

Title="Rendered by QuickLaTeX.com" height="13" width="170" style="vertical-align: -1px;">. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма , а произведение .

Выразим сумму квадратов корней через их сумму и произведение:

Ответ

7; 12; 25.

Пример 2

Задание

Решите уравнение . При этом не применяйте формулы квадратного уравнения.

Решение

У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

Ответ

И Пример 4

Задание

Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

Решение

По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

Сумма корней нового уравнения будет равна:

А произведение .

По теореме, обратной теореме Виета, новое уравнение имеет вид:

Ответ

Получилось уравнение, каждый корень которого в два раза больше:

Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

Полезные источники:

  1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
  2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
  3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

Теорема Виета, обратная формула Виета и примеры с решением для чайников обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру